
Riemann, Collected Papers 

XII. 

On the representation of a function by a trigonometric series. 

(Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu 
Gottingen, vol. 13.) 

The following essay on trigonometric series consists of two essentially dif­
ferent parts. The first part contains a history of the research and opinions on 
arbitrary (graphically given) functions and their representation by trigono­
metric series. In its composition I was guided by some hints of the famous 
mathematician, to whom the first fundamental work on this topic was due. 
In the second part, I examine the representation of a function by a trigono­
metric series including cases that were previously unresolved. For this, it was 
necessary to start with a short essay on the concept of a definite integral and 
the scope of its validity. 

History of the question of the representation of an arbitrary func­
tion by a trigonometric series. 

1. 

The trigonometric series named after Fourier, that is, the series of the 
form 

al sin x + a2 sin 2x + a3 sin 3x + ... 
1 +"2 bo + bi cos X + b2 cos 2x + b3 cos 3x + ... 

playa significant role in those parts of mathematics where arbitrary functions 
occur. Indeed, there is reason to assert that the most substantial progress 
in this part of mathematics, that is so important for physics, has depended 
on a clear insight into the nature of these series. As soon as mathematical 
research first led to consideration of arbitrary functions, the question arose 
whether an arbitrary function could be expressed by a series of the above 
form. 

This occurred in the middle of the eighteenth century during the study 
of vibrating strings, a topic in which the most prominent mathematicians of 
the time were interested. Their insights about our topic would probably not 
be represented were it not for the investigation of this problem. 
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As is well known, under certain hypotheses that conform approximately 
to reality, the shape of a string under tension that is vibrating a plane is 
determined by partial differential equation 

where x is the distance of an arbitrary one of its points from the origin and y 
is the distance from the rest position at time t. Furthermore a is independent 
of t, and also of x for a string of uniform thickness. 

D' Alembert was the first to give a general solution to this differential 
equation. 

He showed1 that each function of x and t, which when set in the equation 
for y yields an identity, must have the form 

J(x + at) + ¢(x - at). 

This follows by introducing the independent variables x + at, x - at instead 
of x and t, whereby 

changes into 
8 oy 

4 o(x+at) 

8(x - at)' 

Besides the partial differential equation, which results from the general 
laws of motion, y must also satisfy the condition that it is always 0 at the 
endpoints of the string. Thus, if one of these points is at x = 0 and the other 
at x = £, we have 

J(at) = -¢( -at), J(£ + at) = -¢(£ - at) 

and consequently 

J(z) = -¢( -z) = -¢(£ - (£ + z)) = J(2£ + z), 
y = J (at + x) - J (at - x). 

After d' Alembert had succeeded in finding the above for the general so­
lution of the problem, he treated, in a sequel2 to his paper, the equation 

1 Memoires de l'academie de Berlin, 1747, p. 214. 
2Ibid. p. 220. 
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f (z) = f (2£ + z). That is, he looked for analytic expressions that remained 
unchanged if z is increased by 2£. 

In the next issue of !v! ernoires de I B eTlin3 , Euler made a basic 
advance, giving a new presentation of d ' Alembert's work and recognizing 
more exactly the nature of the conditions which the function f (:r) must 
satisfy. He noted that, by the nature of the problem, the movement of the 
string is completely determined, if at some point in time the shape of the 
string and the velocity are given at each point (that is, y and ~). He showed 
that if one thinks of the two functions as being determined by arbitrarily 
drawn curves, then the d'Alembert function f(z) can always be found by a 
simple geometric construction. In fact, if one assumes that y = g(x) and 
~ = h(x) when t = 0, then one obtains 

f(x) - f( -x) = g(x) and f(x) + f( -x) = ± J h(x) dx 

for values of x between 0 and £, and hence obtains the function f(z) between 
-£ and £. From this, however, the values of f(z) can be derived for all other 
values of z using the equation 

f(z) = f(2£ + z). 

This is, represented in abstract but now generally accepted concepts, 
Euler's determination of the function f (z). 

D' Alembert at once protested against this extension of his methods by 
Euler\ since it assumed that y could be expressed analytically in t and x. 

Before Euler replied to this, Daniel Bernoulli5 presented a third treatment 
of this topic, which was quite different from the previous two. Even prior 
to d'Alembert, Taylor6 had seen that y = sin n;x cos n~o.t, where n is an 

integer, satisfies fi¥ = Q2~ and always equals 0 for x = 0 and x = £. From 
this he explained the physical fact that a string, besides its fundamental 
tone, can also give the fundamental tone of a string that is ~,i,~, ... as 

3 Memoires de l'academie de Berlin, 1748, p. 69. 
4Memoires de l'academie de Berlin, 1750, p. 358. 'Indeed, it seems to me, one can only 

express y analytically in a more general fashion by supposing it is a function of t and x. 
But with this assumption one only finds a solution of the problem for the case where the 
different graphs of the vibrating string can be contained in a single equation.' 

5 Memoires de l'academie de Berlin, 1753, p. 147. 
6Taylor, De methode incrementorum. 

221 



XII. On the representation of a function by a trigonometric series. 

long (but otherwise similarly constituted). He took his particular solutions 
as general: he thought that if the pitch of the tone was determined by the 
integer n, the vibration the string would always be as expressed 
the equation, or at least very nearly. The observation that a string could 
simultaneously sound different notes now led Bernoulli to the remark that 
the string (by the theory) could also vibrate in accordance with the equation 

'""' n7rX n7rQ; 
y = L.....t an sin -f- cos -f- (t - f3n). 

Further, since all observed modifications of the phenomenon could be ex­
plained by this equation, he considered it the most general solution. 7 In or­
der to support this opinion, he examined the vibration of a massless thread 
under tension, which was weighted at isolated points with finite masses. He 
showed that the vibrations can be decomposed into a number of vibrations 
that is always equal to the number of points, each vibration being of the 
same duration for all masses. 

This work of Bernoulli prompted a new paper from Euler, which was 
printed immediately following it in the Memoires de l'academie de Berlin.8 

He maintained, in opposition to d'Alembert9 , that the function J(z) could 
be completely arbitrary between -f and f. EulerlO noted that Bernoulli's 
solution (which he had previously represented as particular) is general if and 
only if the series 

. X7r . 2x7r 
alsm- +a2sm-- + ... 

f f 
1 X7r 2x7r 

+ - bo + b1 cos - + b2 cos -- + ... 
2 f f 

can represent the ordinate of an arbitrary curve for the abcissa x between 
o and f. Now no one doubted at that time that all transformations which 
could be made with an analytic expression (finite or infinite) would be valid 
for each value of the variable, or only inapplicable in very special cases. 
Thus it seemed impossible to represent an algebraic curve, or in general a 
non periodic analytically given curve, by the above expression. Hence Euler 
thought that the question must be decided against Bernoulli. 

7Loc. cit., p. 157 section XIII. 
8 Memoires de l'academie de Berlin, 1753, p. 196. 
9Loc. cit., p. 214 

lOLoc. cit., sections III-X. 
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The disagreement between Euler and d'Alembert was still unresolved by 
This induced the young, and then little known, mathematician La-

to seek the solution of the problem a completely new way, by 
which he reached Euler's results. He undertookll to determine the vibration 
of a massless thread which is weighted with an indeterminate finite number 
of equal masses that are equally spaced. He then examined how the vibra­
tions change when the number of masses grows towards infinity. Although 
he carried out the first part of this investigation with much dexterity and 
a great display of analytic ingenuity, the transition from the finite to the 
infinite left much to be desired. Hence d' Alembert could continue to vindi­
cate the reputation of his solution as the most general by making this point 
in a note in his Opuscules Mathernatiques. The opinions of the prominent 
mathematicians of this time were, and remained, divided on the matter; for 
in later work everyone essentially retained his own point of view. 

In order to finally arrange his views on the problem of arbitrary func­
tions and their representation by trigonometric series, Euler first introduced 
these functions into analysis, and supported by geometrical considerations, 
itpplied infinitesimal analysis to them. Lagrange12 considered Euler's results 
(his geometric construction for the course of the vibration) to be correct, 
but he was not satisfied with Euler's geometric treatment of the functions. 
D'Alembert,13 on the other hand, acceded to Euler's way of obtaining the 
differential equation and restricted himself to disputing the validity of his 
result, since one could not know for an arbitrary function whether its deriva­
tives were continuous. Concerning Bernoulli's solution, all three agreed not 
to consider it as general. While d'Alembert,14 in order to explain Bernoulli's 
solution as less general than his own, had to assert that an analytically given 
periodic function cannot always be represented by a trigonometric senes, 
Lagrange15 believed it possible to prove this. 

2. 

Almost fifty years had passed without a basic advance having been made 
in the question of the analytic representation of an arbitrary function. Then 

11 Miscellanea Taurinensia, vol. 1. Recherches sur la nature et la propagation du son. 
12 Miscellanea Taurinensia, vol. II, Pars math., p. 18. 
130puscules Mathematiques, d' Alembert. Vol. 1, 1761, p. 16, Sections VII-XX. 
140puscules Mathematiques, vol. I, p. 42, Section XXIV. 
15 Misc. Taur. vol. III, Pars math., p. 221, Section XXV. 
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a remark by Fourier threw a new light on the topic. A new epoch in the 
development of this of mathematics began, which soon made itself known 
in a wonderful expansion of mathematical Fourier noted that in the 
trigonometric series 

f(x) = {a 1 sinx+a2 sin2x+ ... 
+ ~ bo + b1 cos X + b2 cos 2x + . . . , 

the coefficients can be determined by the formulae 

1171" 1171" an = - f (x) sin nx dx, bn = - f ( x ) cos nx dx. 
7r -71" 7r -71" 

He saw that the method can also be applied if the function f (x) is arbitrary. 
He used a so-called discontinuous function for f (x) (with ordinate a broken 
line for the abscissa x) and obtained a series which in fact always gives the 
value of the function. 

Fourier, in one of his first papers on heat, which was submitted to the 
French academy16 (December 21, 1807) first announced the theorem, that 
an arbitrary (graphically given) function can be expressed as a trigonometric 
series. This claim was so unexpected to the aged Lagrange that he opposed 
it vigorously. There should 17 be another note about this in the archives of 
the Paris academy. Nevertheless, Poisson refers,18 whenever he makes use of 
trigonometric series to represent arbitrary functions, to a place in Lagrange's 
work on the vibrating string where this method of representation can be 
found. In order to refute this claim, which can only be explained by the well 
known rivalry19 between Fourier and Poisson, we must once again return to 
Lagrange's treatise, since nothing can be found that is published about these 
facts by the academy. 

In fact, one finds in the place cited20 by Poisson the formula: 

'y = 2 J Y sin X 7r dX x sin X7r + 2 J Y sin 2X 7r dX x sin 2x7r 

+ 2 J Y sin 3X 7r dX x sin 3x7r + etc. + 2 J Y sin nX 7r dX x sin nX7r, 

16 Bulletin des sciences p. la soc. philomatique, vol I, p. 112. 
17From a verbal report of Professor Dirichlet. 
18 Among others, in the expanded Traite de mecanique No. 323, p. 638 
19The review in the Bulletin des Sciences on the paper submitted by Fourier to the 

academy was written by Poisson. 
20 Misc. TaUT., vol. III, PaTS math., p. 261. 
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so that when x = X, one has y = Y, Y being the ordinate corresponding to 
the abscissa X'. 

This formula looks so much like a Fourier series that is easy to confuse 
them with just a quick glance. However, this appearance arises only because 
Lagrange uses J dX where today we would use L: ~X. It gives the solution 
to the problem of determining the finite sine series 

al sin X7r + a2 sin 2x7r + ... + an sin nX7r 

so that it has given values when x equals 

1 2 
n+l' n+l' 

... , 
n 

n+l 

Lagrange denotes the variable by X. If Lagrange had let n become infinitely 
large in this formula, then certainly he would have obtained Fourier's re­
sult. However, if we read through his paper, we see that he was far from 
believing that an arbitrary function could actually be represented by an in­
finite sine series. Rather, he had undertaken the whole work because be 
believed that an arbitrary function could not be expressed by a formula. 
Concerning trigonometric series, he thought they could be used to represent 
any analytically given periodic function. Admittedly, it now seems scarcely 
possible that Lagrange did not obtain Fourier's series from his summation 
formula. However, this can be explained in that the dispute between Euler 
and d' Alembert had predisposed him towards a particular opinion about the 
proper method of proceeding. He thought that the vibration problem, for 
an indeterminate finite number of masses, must be fully solved before apply­
ing limit considerations. This necessitated a rather extensive investigation21 , 

which was unnecessary if he had been acquainted with the Fourier series. 
The nature of the trigonometric series was recognized perfectly correctly 

by Fourier. 22 Since then these series have been applied many times in math­
ematical physics to represent arbitrary functions. In each individual case it 
was easy to convince oneself that the Fourier series really converged to the 
value of the function. However, it was a long time before this important 
theorem would be proved in general. 

21 Misc. Taur., vol III, Pars math., p. 25l. 
22 Bulletin d. sc. vol. I, p. 115. 'The coefficients a, a', a", ... , being then determined', 

etc. 
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The proof which Cauchy23 read to the Paris academy on February 27, 
1826, is inadequate, as Dirichlet24 has shown. Cauchy assumed that if x is 
replaced by the complex argument x + an arbitrary periodic function 

, then the function is finite for each value of y. However, this only 
occurs if the function is a constant. It is easy to see that this hypothesis was 
unnecessary for the later conclusions. It suffices that a function ¢(x + yi) 
exists which is finite for all positive values of y, whose real part is equal to 
the given periodic function f (x) when y = O. If one assumes this theorem, 
which is in fact true,25 then Cauchy's method certainly leads to the goal; 
conversely, this theorem can be derived from the Fourier series. 

3. 

The question of the representation by trigonometric series of everywhere 
integrable functions with finitely many maxima and minima was first settled 
rigorously by Dirichlet26 in a paper of January 1829. 

The recognition of the proper way to attack the problem came to him 
from the insight that infinite series fall into two distinct classes, depending 
on whether or not they remain convergent when all the terms are made 
positive. In the first class the terms can be arbitrarily rearranged; in the 
second, on the other hand, the value is dependent on the ordering of the 
terms. Indeed, if we denote the positive terms of a series in the second class 
by 

and the negative terms by 

then it is clear that L: a as well as L: b must be infinite. For if they were 
both finite, the series would still be convergent after making all the signs the 
same. If only one were infinite, then the series would diverge. Clearly now 
an arbitrarily given value C can be obtained by a suitable reordering of the 
terms. We take alternately the positive terms of the series until the sum is 
greater than C, and then the negative terms until the sum is less than C. 
The deviation from C never amounts to more than the size of the term at 

23 Memoires de l'ac. d. sc. de Paris, vol. VI, p. 603. 
24Grelle's Journal fur die Mathematik, vol IV, pp. 157 & 158. 
25The proof can be found in the inaugural dissertation of the author. 
26 Grelle's Journal, vol. IV, p. 157. 
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place the signs were switched. Now, since the numbers a as well as 
numbers b become infinitely small with increasing index, so also are the 

lUCHJ'.LU from C. If we proceed sufficiently far in the series, the deviation 
Iwcomes arbitrarily small, that is, the series converges to C. 

The rules for finite sums only apply to the series of the first class. Only 
IlwHe can be considered as the aggregates of their terms; the series of the 
Hocond class cannot. This circumstance was overlooked by mathematicians 

the previous century, most likely, mainly on the grounds that the series 
which progress by increasing powers of a variable generally (that is, excluding 
individual values of this variable) belong to the first class. 

Clearly the Fourier series do not necessarily belong to the first class. The 
wnvergence cannot be derived, as Cauchy futilely attempted,27 from the 
rules by which the terms decrease. Rather, it must be shown that the finite 

~ j7r j ( a) sin a da sin x + ~ j7r j ( a ) sin 2a da sin 2x + ... 
n -7r n -7r 

Ij7r + - j ( a) sin na da sin nx 
n -7r 

1 j7r Ij7r + - j ( a) da + - j ( a) cos a da cos x 
2n -7r n -7r 

Ij7r Ij7r + - j ( a) cos 2a da cos 2x + ... + - j ( a ) cos na da cos nx, 
n -7r n -7r 

or, what is the same, the integral 

1 j7r sin 2nil (x - a) 
2'"" _~ j(a) . x-a da, 
/I" SIn -2-

11pproaches the value j (x) infinitely closely when n increases infinitely. 
Dirichlet based this proof on two theorems: 

o If 0 < c ::; n /2, then f; 4>(;3) sin~~~;l)f3 d;3 tends to ~ 4>(0) as n increases to 
iufinity. 

If 0 < b < c ::; n /2, then fbc 4>(;3) sin~~;l)f3 d;3 tends to 0, as n increases to 
ildillity. 

27Diriehlet in Grelle's Journal, vol IV, p. 158. 'Quoi qu'il en soit de eette premiere 
nbl'-lervation, ... a mesure que n eroit.' 
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It is assumed in both cases that the function ¢(fJ) is either always increasing 
or always decreasing between the limits of integration. 

If the function 1 does not change from increasing to decreasing, or from 
decreasing to increasing, infinitely often, then using the above theorems the 
integral 

1 111" sin 2nil (x - 0:) 
-2 1(0:) . x-a do: 

7r -7(" SIn -2-

can clearly be split into a finite number of parts, one of which tends28 to 
~ I(x + 0), another to ~ I(x - 0), and the others to 0, as n increases to 
infinity. 

It follows from this that a periodic function of period 27r, which 

1. is everywhere integrable, 

2. does not have infinitely many maxima and minima, and 

3. assumes the average of the two one-sided limits when the value changes 
by a jump, 

can be represented by a trigonometric series. 
It is clear that a function satisfying the first two properties but not the 

third cannot be represented by a trigonometric series. A trigonometric series 
representing such a function, except at the discontinuities, would deviate 
from it at the discontinuities. Dirichlet's research leaves undecided, whether 
and when functions can be represented by a trigonometric series that do not 
satisfy the first two conditions. 

Dirichlet's work gave a firm foundation for a large amount of important 
research in analysis. He succeeded in bringing light to a point where Euler 
was in error. He settled a question that had occupied many distinguished 
mathematicians for over 70 years (since 1753). In fact, for all cases of nature, 
the only cases concerned.in that work, it was completely settled. For however 
great our ignorance about how forces and states of matter vary for infinitely 
small changes of position and time, surely we may assume that the functions 
which are not included in Dirichlet's investigations do not occur in nature. 

28It is easy to prove that the value of a function f, which does not have infinitely 
many maxima or minima, for increasing or decreasing values of the argument with limit x, 
either approaches fixed limits f(x + 0) and f(x - 0) (using Dirichlet's notation in Dove's 
Repertorium der Physik, vol. 1, p. 170); or must become infinitely large. 
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Nevertheless, there are two reasons why those cases unresolved by Dirich­
seem to be worthy of consideration. 
First, as Dirichlet noted at the end of his paper, the topic has a very close 

connection with the principles of infinitesimal calculus, and can serve to bring 
greater clarity and rigor to these principles. In this regard the treatment of 
the topic has an immediate interest. 

Secondly, however, the applications of Fourier series are not restricted to 
research in the physical sciences. They are now also applied with success 
in an area of pure mathematics, number theory. Here it is precisely the 
functions whose representation by a trigonometric series was not examined 
by Dirichlet that seem to be important. 

Admittedly Dirichlet promised at the conclusion of his paper to return 
to these cases later, but that promise still remains unfulfilled. The works by 
Dirksen and Bessel on the cosine and sine series did not supply this com­
pletion. Rather, they take second place to Dirichlet in rigor and generality. 
Dirksen's paper,29 (almost simultaneous with Dirichlet's, and clearly written 
without knowledge of it) was, indeed, in a general way correct. However, in 
the particulars it contained some imprecisions. Apart from the fact that he 
found an incorrect result in a special case30 for the sum of a series, he relied 
in a secondary consideration on a series expansion31 that is only possible in 
particular cases. Hence the proof is only complete for functions whose first 
derivatives are everywhere finite. Besse132 tried to simplify Dirichlet's proof. 
However, the changes in the proof did not give any essential simplification, 
but at most clothed it in more familiar concepts, at the expense of rigor and 
generality. 

Hence, until now, the question of the representation of a function by a 
trigonometric series is only settled under the two hypotheses, that the func­
tion is everywhere integrable and does not have infinitely many maxima and 
minima. If the last hypothesis is not made, then the two integral theorems of 
Dirichlet are not sufficient for deciding the question. If the first is discarded, 
however, the Fourier method of determining the coefficients is not applica­
ble. In the following, when we examine the question without any particular 
il.ssumptions on the nature of the function, the method employed, as we will 

is constrained by these facts. An approach as direct as Dirichlet's is not 

29 Grelle's Journal, vol IX, p. 170. 
:30 Lac. cit., formula 22. 
31 Lac. cit., section 3. 
32Schumacher, Astronomische Nachrichten, 374 (vol. 16, p. 229.) 
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possible by the nature of the case. 

On the concept a definite integral and the range of its validity. 

4. 

Vagueness still prevails in some fundamental points concerning the def­
inite integral. Hence I provide some preliminaries about the concept of a 
definite integral and the scope of its validity. 

Hence first: What is one to understand by J: f(x) dx? 
In order to establish this, we take a sequence of values Xl, X2, ... , Xn-l 

between a and b arranged in succession, and denote, for brevity, Xl - a by 
61 , X2 - Xl by 62 , ... , b - Xn-l by 6n , and a positive fraction less than 1 by 
E. Then the value of the sum 

depends on the selection of the intervals 6 and the numbers E. If this now has 
the property, that however the 6's and E'S are selected, S approaches a fixed 
limit A when the 6's become infinitely small together, this limiting value is 
called J: f(x) dx. 

If we do not have this property, then J: f (x) dx is undefined. In some of 
these cases, attempts have been made to assign a meaning to the symbol, 
and among these extensions of the concept of a definite integral there is one 
recognized by all mathematicians. Namely, if the function f (x) becomes 
infinitely large when the argument approaches an isolated value c in the 
interval (a, b), then clearly the sum S, no matter what degree of smallness 
one may prescribe for 6, can reach an arbitrarily given value. Thus it has no 
limiting value, and by the above J: f(x) dx would have no meaning. However 
if 

i c
-

a1 f(x) dx + lb f(x) dx 
a c+a2 

approaches a fixed limit when 0:1 and 0:2 become infinitely small, then one 
understands this limit to be J: f (x) dx. 

Other hypotheses by Cauchy on the concept of the definite integral in the 
cases where the fundamental concepts do not give a value may be appropriate 
in individual classes of investigation. These are not generally established, and 
are hardly suited for general adoption in view of their great arbitrariness. 
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